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Abstract 
The common problem of missing data in databases is being 

dealt with, in recent years, through estimation methods. 

Auto-associative neural networks combined with genetic 

algorithms have proved to be a successful approach to 

missing data imputation. Similarly, two new auto-associative 

models are developed to be used along with the Genetic 

Algorithm to estimate missing data and these approaches are 

compared to a regular auto-associative neural network and 

Genetic algorithm approach. One method combines three 

neural networks to form a hybrid auto-associative network, 

while the other merges Principle Component Analysis and 

neural networks. The hybrid network and Genetic Algorithm 

approach proves most accurate, when estimating one missing 

value, while the PCA and neural network version is more 

consistent and captures patterns in the data most efficiently, 

in the chosen application.  

1 Introduction 

The presence of missing or inaccurate data in databases, 

such as those that house medical and specifically HIV data, 

is a common problem [1]. Missing data may result from 

inefficiencies in the data acquisition or data storage 

processes [1]. Non-response to various fields in a 

questionnaire, the incorrect insertion of data into a database, 

a break in the transmission line and failure of hardware are 

common causes of missing data [1, 2].  Many knowledge-

discovery and data analysis techniques for databases depend 

heavily on complete data [1, 3]; hence an effective method of 

dealing with the missing data is required [1, 2, 3]. 

In the past, cases with missing data were simply deleted; 

however this approach may result in biased or erroneous 

analysis results [4, 5]. If a sensor fails, the value for that 

sensor will need to be estimated quickly and accurately based 

on the values of the other sensors [2], and as a result, case 

deletion will  not be appropriate. This scenario illustrates the 

idea of data imputation, where missing data are predicted 

based on existing data [5]. 

Recent years have shown an increased interest in 

dealing with missing data by estimation or imputation [1, 2, 

4]. An Auto-associative Neural Network (AANN) coupled 

with the Genetic Algorithm (GA)  has been shown by 

Abdella and Marwala [2] to be a successful approach to 

missing data estimation [1, 2]. The efficient estimation of 

missing data relies on the extraction and storage of the 

relationships or correlations between the variables that make 

up the dataset [1]. AANNs allow this to be done [1, 6], but 

other techniques such as Principal Component Analysis 

(PCA) [6, 7] can also be used.  

In this paper, a hybrid auto-associative network is developed 

and its performance in conjunction with the GA is compared to that 

of an ordinary AANN. A PCA and neural network missing data 

estimation system is also developed and compared to the other two 

systems. A description of the methodology is presented followed 

by the experimental implementation using HIV data from the 

department of health in South Africa. Results from this 

implementation are presented and conclusions are drawn.  

2 Background 

2.1 Missing Data 

In order to deal with missing data effectively, it is important to 

understand how data goes missing so as to identify a possible cause 

to or pattern in the missing data [1]. Causes for missing data are 

commonly described as falling into three categories [5]. 

Firstly, ‘Missing Completely at Random’ (MCAR) describes 

the case when the probability of a value of a variable missing does 

not depend on itself or on any of the other variables in the dataset 

[2]. Effectively the cases with missing entries are the same as the 

complete cases [2, 5]. Secondly, ‘Missing at Random’ (MAR) 

describes the case where missing data can be described fully by the 

remaining variables in the dataset [5]. The missing datum depends 

on the remaining data, but not on itself or on any other missing 

data [1, 2]. The final case, ‘Missing Not at Random’ (MNAR), 

occurs when the missing datum depends on itself or on other 

missing data. [1]. Thus it cannot be deduced from the existing data 

and is hence termed the non-ignorable case [1, 2, 5]. 

Based on the mechanism through which the data is determined 

to have gone missing, a suitable approach for dealing with missing 

data can be adopted [1, 2]. MAR and MCAR are referred to 

accessible mechanisms, where the cause of missingness can be 

accounted for [5]. For the case of MNAR, which is described as 

inaccessible due to lack of knowledge concerning the cause of 

missingness [5], there is no choice but to apply listwise deletion, 

where variables are deleted for cases with missing data [4]. 

Imputation methods can be applied to MAR and MCAR [5]. 

Older methods of imputation, such as mean substitution, 

regression-based methods and resemblance-based or ‘hot deck 

imputation’ may produce biased results and standard errors [4, 8]. 

Regression-based methods use a regression to predict an entry, 

while resemblance-based methods impute new values based on 

similar cases [4]. Two newer methods include multiple imputation 

and Expectation Maximisation [4] and are dealt with by [5] and [1] 

respectively. Local Global, Multilayer Perceptron (MLP) and 

Radial Basis Functions (RBF) AANNs are used with optimisation 

algorithms to successfully estimate missing data [1, 2, 9]. It is 

assumed that all data is MAR and that it is possible to deduce 

missing entries based on the remaining data [1]. 



 

2.2 Auto-associative Neural Networks 

An auto-associative also referred to as auto-encoder neural 

network is a specific neural network,  trained to recall its 

inputs [14]. Given a set of inputs, the network predicts these 

inputs as outputs and thus has the same number of output 

nodes as there are inputs [14]. However, the hidden layer is 

characterized by a bottleneck, with fewer hidden nodes than 

output nodes [1, 14]. This gives it a butterfly-like structure as 

shown in figure 1 [1]. The smaller hidden layer projects the 

inputs onto a smaller space, extracting linear and non-linear 

interrelationships, such as covariance and correlation, from 

the input space and also removes redundant information [1, 

14]. This means that they can be used in applications to recall 

the inputs and in missing data estimation applications [1, 2, 

9, 14]. 

 

 

2.3 Genetic Algorithm (GA) 

The GA is a population-based, probabilistic technique that 

works to find a solution to a problem from a population of 

possible solutions [15]. It is based on Darwin’s theory of 

evolution where members of the population compete to 

survive and reproduce while the weaker ones die out [16]. 

Each individual is assigned a fitness value according to how 

well it meets the objective of solving the problem [15]. New 

and more fitting individual solutions are produced during a 

cycle of generations, wherein selection and recombination 

operations, analogous to gene transfer [2] are applied to the 

current individuals [15]. This continues until a termination 

condition is met, after which the best individual thus far is 

considered the solution to the problem [15].   

Unlike many optimisation algorithms, GA converges to a 

global optimal solution [1]. GA has also been proved to be 

very successful in many applications including the travelling 

salesman problem, adaptive control and database query 

optimisation [2]. Other optimisation techniques include 

particle swarm optimisation, simulated and quantum 

annealing as well as ant colony optimisation [1]. 

 

2.4 Principal Component Analysis 

Principal Component Analysis (PCA) is a method of 

identifying patterns in data and displaying those patterns in 

such a way so as to highlight the similarities and differences 

amongst the data [7]. It is used in data analysis to identify 

and extract the main correlation variables amongst data [6]. 

This allows the dimensionality of the data to be reduced, 

without loss of essential information [6]. Hence the data is 

effectively compressed; consequently PCA finds an application in 

image compression [7]. 

PCA has been described as the optimum linear, information-

preserving transformation [6, 17] and has been shown to facilitate 

many types of multivariate analysis, including fault detection and 

data validation [6, 18].  

3 Design Methodology 

For missing data estimation using an auto-associative model in 

conjunction with an optimisation technique, it is imperative that the 

auto-associative model be as accurate as possible [14]. Hence this 

paper attempts to find new and improved ways to capture and 

model the interrelationships between variables in a dataset and use 

the interrelationships  along with an optimisation technique to 

predict missing entries.  

The approach is summarised in figure 2 where Xk and Xu are the 

known and unknown variables respectively and constitute the input 

space [1]. 

 

 
 The Genetic Algorithm is used to estimate values for the 

unknown variables and these are fed into the auto-associative 

model along with the known inputs from the database [1]. The 

auto-associative model is trained, using complete data, to extract 

and store the correlations and interrelationships between the 

variables in the dataset and develop a mapping function F. An 

output Y
r
 can thus be formed as shown by (1). 
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Since the auto-associative model attempts to replicate the 

inputs at the outputs, the output is approximately equal to the input 

[2]. A small error exists between the input and output, the size of 

which depending on how accurate the auto-associative model is [1, 

2]. This error is shown by (2) 
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 The error will be at a minimum when the output comes closest 

to matching the input. This occurs only when the data inputted to 
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Figure 2.  Structure of missing data estimator using an 

auto-associative model and the Genetic Algorithm. 
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Figure 1: Schematic of a five-input five-output auto 

associative neural network. 

 



the auto-associative model carries the same correlations and 

interrelationships as those captured by the model during 

training [1]. Hence the minimisation of the error function 

implies the optimisation of the unknown variables such that 

the complete data vector X
r

 fits the pattern given by the 

complete data. Three designs for the auto-associative model 

are presented i.e. an ordinary auto-encoder neural network, a 

hybrid auto-encoder network and a combination of PCA and 

neural networks to form an auto-associative function.  

 

3.1 Regular Auto-Encoder Neural Network 

The regular auto-encoder network has a structure similar to 

that depicted in figure 1. MLP architecture is used due to its 

overall superior performance over RBF architecture in this 

application. The GA is used to optimise the number of 

hidden nodes and training cycles for the network so as to 

make the network as accurate as possible [14]. 

 

3.2 Hybrid Auto-Associative Network 

Although MLP AANNs outperformed RBF AANNs, the 

latter showed superiority in predicting a few variables. The 

design of the Hybrid auto-associative network has three 

objectives: 

• To combine the best from both the MLP and 

RBF architectures, 

• To correct some of the distortion introduced by a 

single auto-encoder network and 

• To capture complex non-linear relationships 

amongst variables more efficiently. 

 

The structure of the Hybrid auto-associative network is 

shown in figure 3, where X
r

 is the set of inputs and Y
r
 is the 

predicted version of X
r

. The second layer MLP network is 

trained with a different part of the dataset to that used to train 

the MLP and RBF auto-encoder. This aids the corrective 

ability of the network. The number of hidden nodes in each 

network is optimised using the GA. 

 
 

3.3 PCA and Neural Network Approach  

In order to make the auto-encoder network more efficient, 

when working with dimensionally complex and highly non-

linearly related data, PCA is performed on the data before 

propagation through the auto-encoder. This performs much 

of the linear correlation extraction and reduces the 

dimensionality of the data, thus reducing the burden on the auto-

encoder.  

The auto-encoder is trained to recall the reduced data and the 

inverse PCA is then applied to restore the original data. MLP 

neural networks are trained to mimic the principal component 

extraction and original data reconstruction functions i.e. the PCA 

and inverse PCA functions. All architectures are optimised using 

the GA. Figure 4 depicts the arrangement of the networks, where R 

and P are the original and predicted dimensionally-reduced data 

respectively. 

 
Equation (4) summarises the auto-associative function, where 

fFWD is the PCA forward function, fAA is the function of the auto-

encoder neural network and fINV is the inverse PCA function,   

( )( )( )XWfWfWfY FWDAAINV

rrrrr
,,, 123=              (4) 

where W1, W2 and W3 are the weights of the dimensionally 

reducing, auto-encoder and reconstruction neural networks 

respectively.  

4 Experimental Implementation 

4.1 HIV Data Analysis  

The dataset used was obtained from the South African antenatal 

sero-prevalence survey in 2001 and consists of information 

concerning pregnant women who have visited selected public 

clinics in South Africa [1, 14]. Only women participating for the 

first time in this national survey were eligible [1, 14].   

As done in by Betechuoh et al [14], who achieved successful 

results with the above data, eleven attributes from the dataset are 

used. They are summarised in table 1. The HIV status is 

represented in binary form i.e. a 1 indicating a positive status, 

while a 0 implies a negative status [1, 14]. Gravidity refers to the 

number of combined complete and incomplete pregnancies that the 

woman has experienced, while parity refers to the number of 

occasions on which the woman has given birth [1, 14]. Age gap 

refers to the difference in age between the pregnant woman and the 

prospective father of the child [1, 14]. Rapid Plasma Reagin (RPR) 

refers to a screening test for syphilis for which HIV may cause a 

false positive test result [19]. Qualitative variables, stored as text, 

such as the race of the mother and her province and region of 

origin, are encoded as integers [14]. The education level of the 

pregnant woman is represented by an integer corresponding to the 

highest grade completed, with 13 corresponding to tertiary 

education [1].  

The data consists of 16608 instances, however many of them 

contain missing variables and/or outliers. Such instances are 

removed, leaving behind a dataset of 10829 instances. This is 

normalised, randomised to improve NN performance and thereafter 
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Figure 3: Structure of a 3-input, 3-output hybrid auto-

associative network 
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Figure  4: Structure of a 3-input, 3-output PCA and 

neural network auto-associative model 

 



split equally into training, validation and testing datasets. 

Hence 3609 training examples are used. 

 
The neural network architectures are optimised using the 

validation dataset, while their correct performances are 

verified and tested using the testing dataset. 100 instances are 

randomly extracted from the test dataset and variables therein 

removed. The resulting dataset, with missing values, is used 

to test the performance of the three missing data estimation 

schemes.  

4.2 Neural Network Optimisation 

MATLAB and the NETLAB toolbox [20] were used to 

implement all the neural networks. The ordinary auto-

encoder network is optimised to an 11 input nodes, 9 hidden 

units and 11 output nodes (11-9-11) structure and trained 

with 180 cycles. The MLP auto-encoder of the Hybrid auto-

associative network also has a similar structure while its RBF 

counterpart has one less hidden node in its architecture. The 

correction MLP is optimised to a 22-19-11 structure.  

The optimum number of principal components is 9. These 

account for 99% of the correlation variances in the input 

space. Fewer principal components result in an ineffective 

reconstruction function. The dimensionality reduction, 

Principal Component auto-encoder and data reconstruction 

neural networks are optimised to 11-20-9, 9-8-9 and 9-13-11 

node structures respectively.  

4.3 GA Implementation  

The Genetic Algorithm Optimisation Toolbox (GAOT) was 

used to implement the GA [21]. The initial population size 

was set to 100 and the process was run for 40 generations. 

Simple crossover, non-uniform mutation and normalised 

geometric selection were used as these were found to 

produce satisfactory results, which were not surpassed by 

using other combinations of GA parameters.  

4.4 Performance Evaluation  

The effectiveness of the missing data estimation system is 

evaluated using the Standard Error (SE), the Correlation 

Coefficient (r) and the relative prediction accuracy (A) [1, 2]. 

The Standard Error measures the error between the actual 

values and the predicted values and gives an indication of 

capability of prediction [2]. It is given by (5), where xi is the 

actual value, 
ix̂  is the predicted value and n is the number of 

missing values [2]. 
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The Correlation Coefficient measures the linear similarity 

between the predicted and actual data [1, 2]. r ranges 

between -1 and 1, where its absolute value relates the strength of 

the relationship while the sign of r indicates the direction of 

relationship [2]. Hence a value close to 1 indicates a strong 

predictive capability [2]. The formula is given by (6), where x is 

the mean of the data [2].  
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The relative prediction accuracy is a measure of how many 

predictions are made within a certain tolerance, where the tolerance 

can be set based on the sensitivity demanded by the application [1]. 

When applied to HIV data, the tolerance is set to 10% as done by 

Nelwamondo et al. [1] since it seems suitable to this application. 

The accuracy is given by (7), where nτ is the number of 

predications within tolerance [1].  

100×=
n

n
A τ   (7) 

Using the above mentioned performance parameters, the 

performance of the three missing data estimation systems are 

evaluated by estimating each of the 11 attributes individually. 

Their abilities to estimate two, three and four missing attributes 

simultaneously are examined through the estimation of the Age, 

Age Gap, Parity and Gravidity variables.  

5 Experimental Results and Discussion 

The comparisons of the Standard Errors, Correlation Coefficients 

and relative prediction accuracies for the three systems, when 

estimating a single missing value, are shown in figures 5, 6 and 7 

respectively. Table 2 summarises the mean performance of the 

three systems when estimating a single variable.  
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Figure 6: Correlation Coefficients for all variables 

when one missing value is estimated by the three 

estimator systems 
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Figure 5: Standard errors for all variables when one 

missing value is estimated by the three estimator systems 

 

Table 1: Summary of variables used from HIV 

data

 



 

Figure 8, 9, 10 and 11 depict the respective estimations of a 

few instances of the age attribute, when one, two, three and 

four values are missing from an instance.  

 

 
 

 

 

 
 

The average Standard Errors, Correlation Coefficients and 

relative prediction accuracies for the estimation of 1 – 4 

simultaneous missing values are summarised in tables II – IV 

respectively.  All the models show efficiency in the estimation of 

certain variables such as age, age gap, gravidity and parity. This is 

indicated by the high correlation coefficients, and low errors 

associated with these variables, as shown in figures 5 and 6. 

Conversely, all estimations of some variables such as HIV status 

and RPR are poor. This is clearly displayed in figures 5 – 7. This 

may be due to weak or highly non-linear interrelationships between 

these variables and the rest of the variables in the dataset. 

Figures 5 – 6 show that the Hybrid auto-associative network, 

coupled with the GA is the most accurate when predicting a single 

missing value. This is supported by table 2, which shows that the 

hybrid auto-associative system produces the smallest mean 

Standard Error and has the highest overall correlation coefficient 

and relative prediction accuracy. The hybrid network performs 

better than a regular AANN overall. 

The PCA and neural network auto-associative model 

demonstrates an increased ability to capture correlations within the 

data. This is shown by figure 6, where the model produces the 

highest correlations for most of the poorly estimated variables.  

Tables 3 – 5 show that the PCA and neural network auto-

associative model coupled with the GA performs best for multiple 

simultaneous estimations. The considerably higher correlation 

coefficients shown in table 4, for cases requiring multiple 

estimations, shows superiority over the other two models  when it 

comes to capturing the patterns and correlations within the data. 

For this reason the PCA and neural network system would be best 
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Figure 7: Relative Predicative Accuracies for all 

variables when one missing value is estimated by the 

three estimator systems. 
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Figure 8: Comparing the estimation of the 

normalised Age variable for 1 missing value. 
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Figure 9: Comparing the estimation of the normalised 

Age variable for 2 missing values. 

 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Instance

A
c
tu

a
l/
P

re
d
ic

te
d
 M

is
s
in

g
 A

g
e
 V

a
lu

e

Actual Age

AANN Predicted Age

Hybrid AAN Predicted Age

PCA NN Predicted Age

 
Figure 10: Comparing the estimation of the 

normalised Age variable for 3 missing values. 
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 Figure 11: Comparing the estimation of the normalised 

Age variable for 4 missing values. 
 

Table 2: Overall performance summary for 1 missing value 

 



suited for implementation in a real system since more than 

one missing value within an instance is likely, as is the case 

with the HIV data used.  

 

 

 
Figures 8 – 10 show that all the models are satisfactory for 

the estimation of up to 3 missing values and that accuracy 

decreases for increasing simultaneous estimations. However, 

figure 11 shows the poor estimation capabilities of all the 

models for the case of 4 missing values. This could be due to 

the data becoming MNAR when four values are missing i.e. 

one missing variable depends most one or more other 

variables that are also missing.  

6 Conclusions 

This paper investigates the estimation of missing data 

through novel techniques. The estimation system involves an 

auto-associative model to predict the input data, coupled with 

the genetic algorithm to approximate the missing data. Three 

auto associative models are investigated i.e. a regular auto-

encoder neural network, a hybrid auto-associative network 

consisting of three neural networks, and the series 

combination of three neural networks to incorporate 

Principal Component Analysis into an auto-associative 

function. The performance of each model in conjunction with 

the GA is investigated. Results show that the hybrid network 

is most accurate for single missing value estimation, while 

the PCA and neural network model provides more 

consistency for multiple estimations. The latter also appears 

to perform better than the other two models when dealing 

with data exhibiting very little interdependencies. 
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Table 3: Mean Standard Error for variables 1, 2, 4 and 5 

 

 

Table 4: Mean Correlation Coefficient for variables 1, 2, 4 

and 5 

 

Table 5: Mean relative prediction accuracy for variables 1, 2, 

4 and 5 

 


